

and Valery Freeman-Allen

## Introduction:

Cell and gene therapies have emerged as groundbreaking approaches for addressing complex diseases. To fully realize their potential, process developers and manufacturers must adopt strategies that enable effective data collection and management. This abstract emphasizes the importance of Electronic Batch Records (EBRs) as a vital tool to facilitate these strategies and unlock the potential of artificial intelligence (AI) in the future.

## **Discussion:**

Providers of starting materials, quality control, and manufacturing play a crucial role in supporting their customers, such as drug development firms, with crucial insights about their products. EBRs enable comprehensive documentation of the numerous steps involved in the cell and gene therapy workflow, including donor qualification, cell isolation, manufacturing, and quality control.

The product procurement and manufacturing lifecycle of cell and gene therapies involve a diverse range of data points, encompassing critical process parameters, quality control measurements, donor or patient-specific information, consumable and excipient details, and equipment parameters. The complexity and data-intensive nature of this comprehensive dataset are vital for ensuring traceability for process control, product quality, and patient safety. The number of data points can vary depending on type of therapy, number of process steps,

level of process monitoring, and process complexity. A single batch record from donor qualification through final product release can be upwards of 3,000 specific data points (Exhibit 1).

| Process                                       | Steps                                                                            | Data P    | oint Count |
|-----------------------------------------------|----------------------------------------------------------------------------------|-----------|------------|
| Cell Collection                               | Donor qualification data (age, medical history, genetic screening results, etc.) |           | 100        |
|                                               | Donor consent and identity verification                                          |           | 50         |
|                                               | Cell collection parameters (volume, cell type, collection device details)        |           | 100        |
|                                               | Collection location and date/time                                                |           | 50         |
|                                               | Collection equipment and environmental conditions                                |           | 100        |
|                                               | Donor sample labeling and tracking                                               |           | 100        |
|                                               |                                                                                  | Sub-total | 500        |
| Cell Processing and<br>Expansion              | Cell isolation and purification parameters                                       |           | 200        |
|                                               | Cell culture conditions (media components, pH, temperature, etc.)                |           | 200        |
|                                               | Cell expansion parameters (passage number, seeding density, growth rate)         |           | 200        |
|                                               | Cell viability and quality control measurements                                  |           | 200        |
|                                               | Cell storage and tracking                                                        |           | 200        |
|                                               |                                                                                  | Sub-total | 1000       |
| Gene Therapy Vector<br>Production             | Vector production parameters (plasmid details, transfection method, viral titer) |           | 200        |
|                                               | Vector purification and concentration parameters                                 |           | 200        |
|                                               | Vector quality control measurements                                              |           | 200        |
|                                               | Vector storage and tracking: 200 data points                                     |           | 200        |
|                                               |                                                                                  | Sub-total | 800        |
| Gene Modification and<br>Transduction         | Gene modification parameters (editing tool, editing efficiency)                  |           | 200        |
|                                               | Transduction parameters (vector-to-cell ratio, transduction method)              |           | 100        |
|                                               | Transduction efficiency and quality control measurements                         |           | 100        |
|                                               | Transduced cell storage and tracking                                             |           | 100        |
|                                               |                                                                                  | Sub-total | 500        |
| Final Product<br>Formulation and<br>Packaging | Formulation components and concentrations                                        |           | 100        |
|                                               | Fill/finish parameters (vial size, labeling, sealing)                            |           | 50         |
|                                               | Packaging and storage conditions                                                 |           | 50         |
|                                               |                                                                                  | Sub-total | 200        |
| Final Quality Control<br>Testing              | Identity and potency assays                                                      |           | 200        |
|                                               | Purity and impurity testing                                                      |           | 100        |
|                                               | Sterility and endotoxin testing                                                  |           | 100        |
|                                               | Stability testing                                                                |           | 100        |
|                                               |                                                                                  | Sub-total | 500        |
| Distribution and Supply<br>Chain              | Shipment and transport details                                                   |           | 50         |
|                                               | Cold chain maintenance and temperature monitoring                                |           | 50         |
|                                               |                                                                                  | Sub-total | 100        |
|                                               |                                                                                  | TOTAL     | 3600       |



The FDA recognizes the significance of data in advancing these therapies and has provided guidance on its utilization, emphasizing the importance of robust data collection, analysis, and process control throughout the manufacturing process and publishing a framework for the regulatory considerations for AI and machine learning (ML) algorithms in medical devices. EBRs can help facilitate meeting these guidelines and frameworks.

## **Conclusion:**

EBRs play a pivotal role in enabling comprehensive data collection, standardization, and integrity and can harness the range of data points involved in the product procurement and manufacturing lifecycle to improve compliance, leverage data-driven insights and unlock the full potential of AI. All of which support the advancement of transformative treatments, improving patient outcomes and addressing unmet medical needs (Exhibit 2).



## References:

Paul D, Sanap G, Shenoy S, Kalyane D, Kalia K, Tekade RK. (2021) Artificial intelligence in drug discovery and development. Drug Discovery Today. Jan;26(1):80-93.

U.S. Food and Drug Administration. (2021). Framework for Regulatory Oversight of Gene Therapy Products.

U.S. Food and Drug Administration. (2019). Framework for Regulatory Oversight of Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD).



100



